3.185 \(\int \frac{A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=150 \[ -\frac{(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac{A \cos (e+f x)}{2 a f \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}+\frac{A \cos (e+f x) \tanh ^{-1}(\sin (e+f x))}{2 a c f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

[Out]

-((A - B)*Cos[e + f*x])/(2*f*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)) + (A*Cos[e + f*x])/(2*a*f*
Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) + (A*ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(2*a*c*f*Sqrt[a
+ a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.373341, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {2972, 2743, 2741, 3770} \[ -\frac{(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac{A \cos (e+f x)}{2 a f \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}+\frac{A \cos (e+f x) \tanh ^{-1}(\sin (e+f x))}{2 a c f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

-((A - B)*Cos[e + f*x])/(2*f*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)) + (A*Cos[e + f*x])/(2*a*f*
Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) + (A*ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(2*a*c*f*Sqrt[a
+ a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2972

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] + Dist[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
 - b^2, 0] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] &&  !SumSimplerQ[n, 1])) && NeQ[2*m + 1, 0]

Rule 2743

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] + Dist[(m + n + 1)/(a*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m
, 1] ||  !SumSimplerQ[n, 1])

Rule 2741

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Di
st[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b
, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx &=-\frac{(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac{A \int \frac{1}{\sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx}{a}\\ &=-\frac{(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac{A \cos (e+f x)}{2 a f \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac{A \int \frac{1}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}} \, dx}{2 a c}\\ &=-\frac{(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac{A \cos (e+f x)}{2 a f \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac{(A \cos (e+f x)) \int \sec (e+f x) \, dx}{2 a c \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=-\frac{(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac{A \cos (e+f x)}{2 a f \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac{A \tanh ^{-1}(\sin (e+f x)) \cos (e+f x)}{2 a c f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.672257, size = 178, normalized size = 1.19 \[ -\frac{\cos (e+f x) \left (2 A \sin (e+f x)-A \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+A \log \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )+A \cos (2 (e+f x)) \left (\log \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )-\log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )\right )+2 B\right )}{4 c f (\sin (e+f x)-1) (a (\sin (e+f x)+1))^{3/2} \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

-(Cos[e + f*x]*(2*B - A*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + A*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]
+ A*Cos[2*(e + f*x)]*(-Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]) +
2*A*Sin[e + f*x]))/(4*c*f*(-1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.269, size = 132, normalized size = 0.9 \begin{align*} -{\frac{\cos \left ( fx+e \right ) }{2\,f} \left ( A \left ( \cos \left ( fx+e \right ) \right ) ^{2}\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -A\ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}+B \left ( \cos \left ( fx+e \right ) \right ) ^{2}-A\sin \left ( fx+e \right ) -B \right ) \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{3}{2}}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x)

[Out]

-1/2/f*(A*cos(f*x+e)^2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-A*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*c
os(f*x+e)^2+B*cos(f*x+e)^2-A*sin(f*x+e)-B)*cos(f*x+e)/(a*(1+sin(f*x+e)))^(3/2)/(-c*(-1+sin(f*x+e)))^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \sin \left (f x + e\right ) + A}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.43705, size = 703, normalized size = 4.69 \begin{align*} \left [\frac{\sqrt{a c} A \cos \left (f x + e\right )^{3} \log \left (-\frac{a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt{a c} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) + 2 \,{\left (A \sin \left (f x + e\right ) + B\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{4 \, a^{2} c^{2} f \cos \left (f x + e\right )^{3}}, -\frac{\sqrt{-a c} A \arctan \left (\frac{\sqrt{-a c} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{3} -{\left (A \sin \left (f x + e\right ) + B\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{2 \, a^{2} c^{2} f \cos \left (f x + e\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(a*c)*A*cos(f*x + e)^3*log(-(a*c*cos(f*x + e)^3 - 2*a*c*cos(f*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x +
e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3) + 2*(A*sin(f*x + e) + B)*sqrt(a*sin(f*x + e) +
 a)*sqrt(-c*sin(f*x + e) + c))/(a^2*c^2*f*cos(f*x + e)^3), -1/2*(sqrt(-a*c)*A*arctan(sqrt(-a*c)*sqrt(a*sin(f*x
 + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*c*cos(f*x + e)*sin(f*x + e)))*cos(f*x + e)^3 - (A*sin(f*x + e) + B)*sq
rt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c))/(a^2*c^2*f*cos(f*x + e)^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \sin \left (f x + e\right ) + A}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)